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Abstract 

The immune system has pattern recognition capabilities based on reinforced learning, memory and affinity 
maturation interacting between antigens and antibodies. The paper deals with the adaptation of artificial immune 
system into genetic algorithm based design optimization. The present study utilizes the pattern recognition from the 
immune system and the evolution from genetic algorithm. The basic idea is derived from the fact that designs should be 
distinguished whether they are usable/feasible or infeasible and should be improved towards the optimal solution. For 
the expression of design solutions, binary coded strings are used to represent antigens and antibodies in artificial 
immune system and chromosomes in genetic algorithm. The paper discusses the procedure of constrained optimization 
that does not rely on any detailed mathematical formulation for constraint handling. A number of mathematical 
function minimization problems are examined for verification, and practical engineering optimization problems 
including inequality constraints are explored to support the proposed strategy.

Keywords: Design optimization; Immune system; Pattern recognition; Affinity measure; Genetic algorithm
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1. Introduction 

The immune system is a natural, rapid and effective 
defense mechanism for a given host against infections. 
In the biological immune system, foreign cells and 
molecules, denoted as antigen, are recognized and 
eliminated by type-specific antibodies. The antigen-
antibody pair may be recognized as a lock and key 
combination, and an appropriate antibody must be 
made to fit a specific antigen. The task of recognizing 
antigens is formidable due to the very large number of 
possible antigens; it is estimated that the immune 
system has been able to recognize at least 1016

antigens (Smith et al., 1993). Such pattern recognition 
capabilities is impressive, given that the genome 
contains about 105 genes, and the immune system 

must use segments of these to construct antibodies for 
all possible antigens that are likely to be encountered. 
In a typical mammal, there are 107 to 108 different 
antibodies. It is also important to emphasize that self-
recognition must be also a part of this pattern 
recognition ability to prevent antibodies from at-
tempting to eliminate other antibodies. The mecha-
nism of the immune system has been modeled based 
on the clonal selection principle; the major features 
are immune learning and memory (de Castro et al., 
2002a). 

Recently, the artificial immune theory has been a 
promising issue in the area of computational intelli-
gence. The biologically inspired artificial immune 
system has been embraced in machine learning, 
pattern recognition, function approximation, data 
clustering and optimization, etc (Coello Coello et al., 
2003). There has been recent considerable attention in 
the application of artificial immune system (AIS) to 
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design optimization; a number of remarkable issues 
have been focused on the constraint handling in 
design optimization (Hajela et al., 1996; Hajela et al., 
1997), multiobjective optimization (Yoo et al., 1999a; 
Coello Coello et al., 2005), multi-criterion design of 
fuzzy systems (Yoo et al., 1999b), and coupled 
interactions between subsystems in multidisciplinary 
design optimization (Lee et al., 1997). 

The present study deals with the artificial immune 
system and its application to genetic algorithm (GA) 
based constrained optimization (Lee et al., 1996; Lee 
et al., 2002). The formal optimization method usually 
finds the optimal solution which is usable and feasible 
in terms of objective function(s) and constraints. The 
present study proposes a new approach such that 
optimal solutions would be obtained by identifying 
usable/feasible and infeasible designs through AIS 
based pattern recognition between antibodies and 
antigens and further by locating better fitted designs 
through GA based evolution. One of advantages in 
the proposed strategy resides on the fact that it does 
not require any mathematical formulation for cons-
traint handling. That is, the proposed optimization 
process works with the natural adaptation such as 
immune based pattern recognition and genetic evo-
lution. In the clonal selection principle, the proli-
feration can reproduce high-affinity antibodies and 
the hypermutation can discover smart antibodies ag-
ainst newly created foreign antigens. Since hyper-
mutation in the immune system is analogous to 
mutation operation in GA, the clonal selection 
algorithm is interpreted as GA without crossover 
(Forrest et al., 1993). The present study accom-
modates the fruitfulness of GA into the framework of 
the immune system. 

The subsequent section introduces the biological 
immune system and its inherent pattern recognition 
capabilities that are analogous to computational 
models. Using well-known affinity measures between 
antigens and antibodies, GA based immune simu-
lation discovers a generalist antibody that represents 
the common pattern among antigens. A method of 
constrained optimization based on AIS and GA is 
discussed in a greater detail. A number of uncon-
strained and constrained function minimization 
problems are first examined as test examples. Subse-
quently, a couple of constrained engineering optimi-
zation problems such as ten-bar planar truss and 
energy preserving flywheel are explored to support 
the present study. 

2. Immune system 

From the viewpoint of pattern recognition in the 
immune system, the most important characteristics of 
B- and T-cells are the ability to carry surface receptor 
molecules capable of recognizing antigens (de Castro 
et al., 2002b). B-cell and T-cell receptors recognize 
antigens with distinct characteristics. The B-cell 
receptor (BCR) interacts with antigenic molecules 
free in solution, while the T-cell receptor (TCR) 
recognizes antigens processed and bound to a surface 
molecule so called major histocompatibility complex 
(MHC). The antigen B-cell receptors are bound to the 
cell membrane and will be secreted in the form of 
antibodies when the cell becomes activated. The main 
role of the B-cell is the production and secretion of 
antibodies in response to pathogenic agents. Each B-
cell produces a single type of antibody, a property 
named monospecificity. These antibodies are capable 
of recognizing and binding to a determined protein. 
The secretion and binding of antibodies constitute a 
form of signaling other cells so that they can ingest, 
process, and/or remove the bound substance. 

The clonal selection principle is the theory used to 
describe the basic properties of an adaptive immune 
response to an antigenic stimulus (de Castro et al., 
2002a; de Castro et al., 2002c; White et al., 2003). 
Clonal expansion take place in a lymphatic gland 
within micro-environment called a germinal center. 
And it is a feature of an adaptive immune process. 
Clonal selection operates on both T-cell and B-cell. 
The main difference between B-cell/T-cell clonal 
expansion is that B-cells suffer somatic mutation 
during reproduction and B-effector cells are active 
antibody secreting cells. In contrast, T-cells do not 
undergo somatic mutation during reproduction, and T-
effector cells are mainly active lymphokine secretors 
or TK cells. The presence of mutational and selective 
events in the clonal expansion process of B-cell 
allows these lymphocytes to increase their repertoire 
diversity and also to become increasingly better in 
their capabilities of B-cells. Due to genetic variation, 
selection and adaptive abilities of B-cells, the clonal 
selection of the B-cell is emphasized. 

Learning in the immune system involves with the 
raise of the population size and the affinity of those 
lymphocytes that have proven to be valuable during 
antigenic recognition phase. Therefore, the immune 
repertoire is biased from random base to repertoire 
base that more clearly reflects the actual antigenic 
environment. In normal course of the evolution of  
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immune system, an organism would be expected to 
encounter a given antigen repeatedly during its 
lifetime. The first exposure to an antigen stimulating 
an adaptive immune response is treated by a small 
number of B-cells respectively producing antibodies 
of different affinity. By storing some high affinity 
antibody to produce against first infection, it con-
siderably improves the effectiveness of immune 
response to secondary encounter. This cell is called 
memory cell. Rather than ‘starting from scratch’ 
every time, this strategy ensure that both speed and 
accuracy of immune response become stronger after 
infection. Also, this system constantly learns through 
directly interacting with environment. 

In a T-cell dependent immune response, the reper-
toire of B-cell activated by a specific antigen is 
basically diversified by two mechanisms; hypermu-
tation and receptor editing. On average, the antibodies 
generated by secondary response have a higher 
affinity than those of the early primary response. This 
phenomenon, which is restricted to T-cell dependent 
responses, is referred to as the maturation of the 
immune response. 

During clonal expansion, random changes present 
the V-region genes of receptor. And occasionally such 
changes will lead to increase affinity of antibody. 
These higher-affinity variants are then selected to 
enter the pool of memory cells. The repertoire is 
diversified through hypermutation, but rare B-cells 
with high affinity mutant receptor can be selected to 
dominate the response. Due to the random nature of 
the somatic mutation process, an amount of mutant 
genes become non-functional or possibly develop 
harmful anti-self specificities. This cells with low 
affinity receptor or self-activated cells must eliminate 
in the pool of memory cells effectively. These cells 
disappear through the process of cell death called 
apoptosis. 

However, instead of the expected clonal elimi-
nation of all self-activated cells, now and then B 
lymphocytes were found that had undergone receptor 
editing: these B-cells had deleted their self-reactive 
receptors and developed entirely new receptors by 
recombination. Therefore, a high affinity clone de-
veloped by somatic mutation or receptor editing 
would be expected to be preferentially expanded. But 
some low affinity cells are allowed to enter the 
repertoire, thereby maintaining the population di-
versity. 

3. GA based immune simulation 

3.1 Affinity measures 

The immune system model in the present study 
uses binary string structures to represent both the 
antigen and antibodies. Such representation is 
traditionally efficient in the GA based simulation and 
optimization in this context. The immune system 
promotes the generation of those antibodies that 
match several antigens simultaneously. The degree of 
match between an antibody and all antigens, therefore, 
indicates the goodness of that antibody and are 
interpreted as the criterion of pattern recognition. 
Various levels of complexity can be introduced in 
developing a numerical measure of the degree of 
match, including the number of matches on a bit-by-
bit basis and the length of contiguously matches 
strings. The present study employs three cases of 
matching functions (de Castro et al., 2002b) that are 
analogous to affinity measurement in the biological 
immune system. 

Case 1: Hamming distance 
Hamming distance between antigen and antibody is 

simply computed by counting the number of matched 
bits using Eq. (1). 

1

L

k
k

D d  (1) 

1kd   for a matched bit 
0kd   for a unmatched bit 

where, L is the string-length of antigen or antibody. 
The typical illustration of Hamming distance is 
shown in Table 1, wherein there are seven bit-matches 
between antigen and antibody. 

Case 2: Multiple contiguous bit rule 
Shape-space that measures the number of r-conti-

guous complementary symbols, named r-contiguous 
bit rule, is considered. Extensive complementary  

Table 1. Affinity measures. 

antigen 11001 00101 10100 11010 

antibody 00110 10101 00101 00101 

similarity 00000 01111 01110 00000 

Case 1: Eqn. (1) D = 1+1+1+1+1+1+1 = 7 

Case 2: Eqn. (2) D = DH(=7) + 24 + 23 = 31 

Case 3: Eqn. (3) D = 0 + (8+4+2+1) + (4+2+1) + 0 = 22
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regions might be interesting for the detection of 
similar characteristics in symmetric portions of the 
molecules and can be useful to perform specific tasks 
such as pattern recognition. Assuming that there are a 
total of R contiguous sub-strings where a number of 
bits are matched between antigen and antibody, 
multiple contiguous bit rule is expressed as follows: 
 

1
2 r

R
D

H
r

D D  (2) 

 
where, DH is Hamming distance obtained from 
Eqn.(1), and Dr is the total number of matched bits in 
the r-th contiguous sub-string. The example of 
multiple contiguous bit rule is shown in Table 1. In 
this case of 2 contiguous sub-strings, note that D = 7 
+ (24 + 23) = 31. 

 
Case 3: Weighted distance 
Weighted distance is quite similar to multiple 

contiguous bit rule, but this considers binary weight 
for matched bits as shown in Eqn.(3). 

 
( 1)

1 1
2

rDR
k

r k
D   (3) 

 
Table 1 demonstrated its results such that D = 

(8+4+2+1) + (4+2+1) = 22. 
 

3.2 Pattern recognition 

Consider a pool of antigens, half of which are the 
type 1111111111 and the other half are of the type 
0000000000. If the both types of antigens are exposed 
to the prospective pool of antibodies with the same 
frequency, than, if the antibody pool is large enough, 
compliments of both these antigen types will be 
developed and maintained in the immune simulation. 
A second example would be an antigen pool that 
contains antigens of the type 000, 110 and 011. Again, 
specialist antibodies that are complimentary to these 
antigens can be developed of the antibody pool is 
large enough to maintain stable populations of these 
antibodies. It is also possible to develop a generalist 
antibody that is minimally different from each of 
these antigens. An antibody of the type 101 has two 
complimentary bits from each of three antigens, i.e., it 
is different from each antigen in exactly two bits. The 
discovery of such a generalist antibody demonstrates 
the ability of the immune simulation to identify 

common patterns among antigens. 
The present study conducts the GA based simul-

ation to discover common antigens using generalist 
search algorithm whose process is shown in Fig. 1. 
Assume that antigens are presented as follows: 

 
50%  11...11**...** 
50%  **...**11...11 
 

where, * means don’t care. Now construct four 
antigens of the above type whose 8-bit values are 
fixed to 1. 
 

1111111100101010 
1111111100100100 
1001010111111111 
0011001011111111 
 
From Fig. 1, take ‘antigen selection parameter’ as 
=3 with a total of 50 antibodies in a population. It 

should be noted that the antibody population is 
initially generated at random. In GA based simulation, 
aforementioned three cases of affinity measures are 
tested with crossover and mutation probabilities of 
0.6 and 0.05, respectively. After a number of GA 
generations as shown in Fig. 2, the average fitness for 
all three affinity measures converges to one, which 
implies that antibodies successfully discover the 
common antigens. 
 

4. Proposed strategy 

The process is a novel approach towards the optimal 
 

 
Fig. 1. Discovery of generalist antibody from antigens. 
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Fig. 2. Average affinity in GA based simulation. 

 

 
Fig. 3. Procedure for AIS based constrained optimization. 

 
design utilizing a concept of artificial immune system. 
Function based optimization methods such as genetic 
algorithm and simulated annealing tradionally employ 
the penalty function technique to accom-modate 
constraint functions. However, such technique 
necessitates the proper selection of penalty functions 
and their corresponding penalty parameters. The 
proposed strategy adapts GA based evolution and AIS 
based pattern recognition in design optimization, 
hence the approach does not require any mathe-
matical formulation in constrained optimization pro-
blems. 

The procedural steps as shown in Fig. 3 are ex-
plained as follows: 

(1) Given a constrained optimization problem, 

generate the design population at random. 
(2) Rank the design population based on the fitness 

value. For unconstrained optimization problems, the 
design individuals are sorted in terms of the objective 
function value only. Constrained problems consider 
both the objective and constraint function values. For 
infeasible designs, one can impose the large value 
(e.g., five to ten times the objective function value) to 
the objective function value. The present study uses 
the factor of ‘five’. Even though this concept is much 
similar to the use of penalty parameters, the present 
study dose not employ the detailed formulation for 
constraint handling. 

(3) Assign the first half of the ranked population to 
the antibodies (Ab), and the second half to the 
antigens (Ag). 

(4) Also store such antigens into a virus group (Vg). 
(5) Perform the GA based immune simulation 

between antibodies and antigens (Fig. 1). 
(6) After the generalist pattern recognition with 

genetic evolution, antigens have been immunized and 
are denoted as IAg. 

(7) Compare Vg and IAg using a proper affinity 
measure as well. Exclude individuals of IAg that are 
quite similar to those of Vg. After the affinity 
measurement, such excluded designs are also stored 
into Vg. 

(8) Add individuals of IAg that are different from 
those of Vg to antibodies, Ab. If the population size is 
not sufficient, generate remaining designs at random. 

(9) Redo from the step (2) until the user specified 
convergence. 

The initial stage assigns relatively better designs as 
antibodies and relatively worse designs as antigens. 
Using the GA based pattern recognition process 
between antibodies and antigens, antigens are im-
munized to accommodate the generalist of antibodies. 
This is an evolutionary process to find better designs 
by creating antibodies with more fit. The proposed 
algorithm generates the cells which internally include 
the characteristics of the evolving antibodies through 
the GA based immune simulation. A design with the 
higher fitness continuously evolves during the 
immune process and such appearance is referred to as 
reinforced learning in terms of biological immune 
system. Participating antibodies are also said to be 
memory cells since they maintain the relatively high 
affinities over the generations. 

In the features of artificial immune system (de 
Castro et al., 2002a), the basic component is an artifi- 
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Fig. 4. Moved axis parallel hyper-ellipsoid function. 
 

cial cell, which is antibody or antigen. The shape-
space model is represented by a binary string type, 
and the structure is a population of artificial cell, 
which corresponds to Ab, Ag, IAg or Vg in the 
present study. The dynamics means the change of 
binary data (step 5) and meta-dynamics implies the 
elimination of poor components and the influx of new 
components (step 7). 
 

5. Illustrative examples 

A number of unconstrained and constrained mathe-
matical functions are explored to find the optimal 
solution using the proposed strategy. Unconstrained 
function problems are first explored to see the 
adaptation of better solution towards the optimum. 
Each function minimization problem uses =10 with 
a total of NPOP=100 design populations. As a 
method of affinity measure, a case of multiple 
contiguous bit rule is considered. 

 
5.1 Moved axis parallel hyper-ellipsoid function 

Minimize
2

2

1
( ) 5 i

i
f x i x  (4) 

where,  5.12 5.12ix  
 

This function is derived from the axis parallel 
hyper-ellipsoid and is more elliptic than the original  

 

 
Fig. 5. Rosenbrock’s valley function. 

 
function. The function contour and optimization 
history are shown in Fig. 4. The optimal solution 
obtained from the present study is f(x1

*, x2
*) = 

f(0.00500, -0.01501) = 0.00238, while the global 
optimum is located at f(x1

*, x2
*) = f(0, 0) = 0.0. 

 
5.2 Rosenbrock’s valley 

Minimize 2 2
2 1 1( ) 100( ) (1 )f x x x x   (5) 

where,  2.048 2.048ix  
 
Rosenbrock’s valley is a well-known benchmarking 

problem for optimization. To find the global optimum 
is very difficult since it is located inside a long, 
narrow and parabolic shaped flat valley. From the 
present study, f(x1

*, x2
*) = f(1.00447, 1.00847) = 

4.38E-5, while the global optimum is located at f(x1
*, 

x2
*) = f(1, 1) = 0.0. The function contour and 

convergence history during the optimization process 
are shown in Fig. 5. 

 
5.3 Rastrigin’s function 

Minimize 
2 2
1 2 1

2

( ) 20 10cos(2 )
10cos(2 )

f x x x x
x

  (6) 

where,  5.12 5.12ix  
 
Rastrigin’s function is composed of a polynomial 
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Fig. 6. Rastrigin’s function. 

 
Table 2: Results of a constrained function minimization. 

 X1 X2 X3 X4 X5 X6 X7 OBJ 

global 2.250 1.956 -0.500 4.375 -0.612 1.094 1.531 680.762

2.385 2.006 -0.890 4.050 0.000 0.811 1.811 689.838

1.893 2.142 -0.473 3.728 0.079 0.344 1.362 698.355

2.442 1.758 0.037 4.705 -0.555 -0.133 1.804 699.352

1.860 1.796 0.377 4.783 -0.775 -0.220 1.221 701.094

1.825 1.846 -0.383 4.592 0.127 -0.002 1.536 698.868

Average value of OBJ (AIS) 697.501

AIS 

Standard deviation of OBJ (AIS) 3.941 

0.000 2.070 0.000 4.219 0.000 1.250 1.485 714.945

2.490 2.129 0.000 3.745 -0.625 1.429 2.500 706.867

2.109 1.987 0.000 4.219 0.001 1.431 2.500 706.266

0.000 1.719 0.000 5.000 0.000 1.250 1.484 720.517

1.229 1.871 -0.241 4.726 -0.384 1.133 1.465 691.891

Average value of OBJ (GA) 708.097

GA 

Standard deviation of OBJ (GA) 9.681 

 
and cosine modulation to produce multiple local 

minima, thus, the function is highly multimodal. Fig. 
6 shows the function contour and optimization history 
from which the optimal solution is f(x1

*, x2
*) = f(0.0, 

0.0) = 0.0004. Note that the global optimum is also 
located at f(x1

*, x2
*) = f(0, 0) = 0.0. 

 
5.4 Constrained function minimization 

This problem has seven design variables with four  

P P

L = 360 inch
P = 100 Kips

5

6

3 1

24

L L

P P

L = 360 inch
P = 100 Kips

5

6

3 1

24

L L

P P

L = 360 inch
P = 100 Kips

5

6

3 1

24

L L

 
Fig. 7. Ten-bar planar truss. 

 
inequality constraints whose optimization statement is 
written as follows (Parsopoulos et al., 2002): 

 

Minimize 
2 2

1 2
4 2 6
3 4 5

( ) ( 10) 5( 12)

3( 11) 10

f x x x

x x x
  (7) 

2 4
6 7 6 6 6 77 4 10 8x x x x x x  

subject to 2 4 2
1 2 3 4 52 3 4 5 127 0x x x x x  

     2
1 2 3 4 57 3 10 282 0x x x x x  

     2 2
1 2 6 723 6 8 196 0x x x x  

     2 3 2
1 2 1 2 3 6 74 3 2 5 11 0x x x x x x x  

where,   10.0 10.0ix  
 
AIS based pattern recognition and GA based 

evolution strategy are conducted to find their results 
of the optimal solution. A total of 10 trials with 
different random seeds in a population are performed 
for AIS and GA, and 5 best solutions are presented in 
Table 2. For both AIS and GA, the population size is 
300, and the number of generation is 10000. In AIS,  
is taken as 7. GA considers probabilities of crossover 
and mutation as 0.8 and 0.05, respectively. It is shown 
that AIS provides better design solutions in terms of 
mean and standard deviation of optimized objective 
function values. Note that numerical values are 
properly truncated to appear.  
 

6. Engineering optimization 

6.1 Ten-bar truss 

The proposed strategy is applied to a constrained 
structural optimization problem. The design objective 
is to determine the optimal cross sectional areas by 
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minimizing the total weight of a statically loaded ten-
bar planar truss subjected to stress constraint on each 
truss member. The schematic is shown in Fig. 7 and 
the mathematical statement of this optimization 
problem and its problem parameters are presented at 
Reference (Haftka et al., 1993). 

 

r1
r 2

r 3

t1 t 22/)( 21 tt

mr o 5.0

m05.0

z

 
Fig. 8. Rotating disk of flywheel. 

 

 
(a) Hamming distance 

 
(b) Multiple contiguous bit rule 

 
(c) Weighted distance 

Fig. 9. Average fitness for truss problem. 

6.2 Rotating disk 

For a flywheel design as shown in Fig. 8, the 
objective is to determine radius and thickness 
variables by maximizing the kinetic energy (KE) 
subjected to weight and yield stresses. The opti-
mization problem (Mistree et al., 1994) is stated as 
follows: 

 

Minimize 
1 2 3 1

1
( , , , )KE r r r t

  (8) 

subject to R Y  
     T Y  
     0.9 oW W  
     1 2t t  & 10.01 0.1t  (unit: m) 
     1 2 30.05 , , 0.5r r r . 
 
In the above problem, R and T are denoted as 

radial and tangential stresses, respectively, and are 
limited by the yield stress, Y. For a volume 
restriction, the designed weight W should be less than 
90% of the baseline design, Wo. Problem parameters 
include-ing material properties are summarized in 
Table 3. 

 
6.2 Results and discussion 

For a ten-bar planar truss problem, design results 
are demonstrated according to ‘antigen selection 
parameter’  and affinity measures. The truss design 
problem uses a total of NPOP=200 design popula-
tions in GA based immune simulation and optimi-
zation. Convergence histories for each of three affi-
nity measures with different values of  are shown in 
Figs. 9 and 10. The final solutions with each method 
are also summarized in Table 4. It is expected that 
multiple contiguous bit rule is the most efficient 
among three cases of affinity measures, and the best 
choice of ‘antigen selection parameter’ is =10. In 
Figs. 10, the number of antibodies which is deemed  
to be better or usable/feasible solutions goes up aroud  

 
Table 3. Problem parameters for rotating disk problem. 

parameter Value 

Yield stress, Y 1.48E9 N/m2 

Rotating speed,  2000 rad/sec 

Poisson ratio,  0.3 

Material density,  7830 kg/m3 

Initial weight, Wo 2171.35 kg 
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100 at the early stage of the optimization process, and 
is maintained at that value. In this study, the number 
of antigens and antibodies turns out to be almost the 
same. The distinction between antigens (worse or 
infeasible designs) and antibodies (better or usable/ 
feasible designs) are examined based on affinity 
measures, and much better solutions of antibodies are 
discovered via GA based immune simulation for 
locating the final optimal design. 

A rotating disk problem is further explored with the 
best choices of parameters and method as used in the 
truss design problem; =10, NPOP=200 with multi-
ple contiguous bit rule as affinity measure. The con-
vergence history for rotating disk problem is shown in 
Fig. 11, wherein the feasible design solution rapidly 
reduces its objective function value at the early  
stage of the optimization process. The optimized 
design solution and its performances are as follows: 

* * * *
1 2 3 1{ , , , } {0.663,0.720,0.116,0.086}r r r t  with KE* = 

51.6MJ starting with an initial design of 
0 0 0 0

1 2 3 1{ , , , } {0.165,0.275,0.525,0.055}r r r t . 

7. Closing remarks 

The paper proposes a novel algorithm for 
constrained optimization utilizing artificial immune 
system and genetic algorithm. Design solutions are 
expressed by binary coded strings to represent 
antigens and antibodies in artificial immune system 
and chromosomes in genetic algorithm. For designs 
in a population, worse, infeasible designs are 
considered as antigens whereas better, usable/feasible 
designs are denoted as antibodies. Affinity measures 
are used to recognize how much antigens and 
antibodies are similar and GA based immune 
simulation is conducted to discover generalist 
antibodies that represent the common pattern among 
antigens. Such newly generated antibodies would 
have more fit and consist of new design populations 
with higher possibility of locating the optimal 
solution. It is emphasized that the present study 
utilizes the pattern recognition capability from 
immune system and the evolution process from 
genetic algorithm. It is a method of natural adaptation 

  
(a) Hamming distance              (b) Multiple contiguous bit rule           (c) Weighted distance 

Fig. 10. The number of feasible designs for truss problem. 

 
Table 4. Results of ten-bar truss problem. 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 weight 

=5 8.05 0.90 8.73 5.17 0.46 1.07 6.41 6.19 4.48 0.95 1797.67 

=10 7.83 1.29 8.94 3.66 0.77 1.22 6.81 7.11 2.97 1.40 1787.26 
case 

1 
=20 7.38 3.23 9.20 3.54 1.01 2.06 7.37 4.56 3.40 2.59 1865.45 

=5 8.17 0.54 8.64 4.33 0.21 0.48 6.29 5.28 4.81 0.47 1665.28 

=10 8.23 0.20 8.20 4.14 0.47 0.25 5.88 5.89 5.31 0.27 1658.47 
case 

2 
=20 7.99 0.46 8.62 4.25 0.50 0.66 6.46 5.51 4.46 0.67 1680.81 

=5 9.18 1.25 8.70 4.97 1.73 0.91 7.23 5.43 5.12 1.09 1925.72 

=10 8.26 1.50 9.02 4.11 1.27 2.84 7.01 5.42 3.17 2.17 1878.85 

A 
I 
S 

case 
3 

=20 7.96 2.11 9.18 3.13 0.94 2.02 7.58 5.19 4.26 1.76 1871.29 
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such that any detailed mathematical formulation for 
constrained minimization process is not required. 
However, there still needs to be more investigation on 
how efficiently ‘antigen selection parameter’ is 
handled, what type of affinity measure is useful, etc. 
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